1,797 research outputs found

    Spatial coherence and stability in a disordered organic polariton condensate

    Full text link
    Although only a handful of organic materials have shown polariton condensation, their study is rapidly becoming more accessible. The spontaneous appearance of long-range spatial coherence is often recognized as a defining feature of such condensates. In this work, we study the emergence of spatial coherence in an organic microcavity and demonstrate a number of unique features stemming from the peculiarities of this material set. Despite its disordered nature, we find that correlations extend over the entire spot size and we measure g(1)(r,r)g^{(1)}(r,r') values of nearly unity at short distances and of 50% for points separated by nearly 10 μ\mum. We show that for large spots, strong shot to shot fluctuations emerge as varying phase gradients and defects, including the spontaneous formation of vortices. These are consistent with the presence of modulation instabilities. Furthermore, we find that measurements with flat-top spots are significantly influenced by disorder and can, in some cases, lead to the formation of mutually incoherent localized condensates.Comment: Revised versio

    Testing Poisson Binomial Distributions

    Get PDF
    A Poisson Binomial distribution over n variables is the distribution of the sum of n independent Bernoullis. We provide a sample near-optimal algorithm for testing whether a distribution P supported on {0, …, n} to which we have sample access is a Poisson Binomial distribution, or far from all Poisson Binomial distributions. The sample complexity of our algorithm is O(n[superscript 1/4]) to which we provide a matching lower bound. We note that our sample complexity improves quadratically upon that of the naive “learn followed by tolerant-test” approach, while instance optimal identity testing [VV14] is not applicable since we are looking to simultaneously test against a whole family of distributions.Shell-MITEI Seed Fund ProgramAlfred P. Sloan Foundation (Fellowship)Microsoft Research (Faculty Fellowship)National Science Foundation (U.S.) (CAREER Award CCF-0953960)National Science Foundation (U.S.) (Award CCF-1101491

    Extreme-Value Theorems for Optimal Multidimensional Pricing

    Get PDF
    Original manuscript: June 2, 2011We provide a Polynomial Time Approximation Scheme for the multi-dimensional unit-demand pricing problem, when the buyer's values are independent (but not necessarily identically distributed.) For all ϵ >; 0, we obtain a (1 + ϵ)-factor approximation to the optimal revenue in time polynomial, when the values are sampled from Monotone Hazard Rate (MHR) distributions, quasi-polynomial, when sampled from regular distributions, and polynomial in n[superscript poly(log r)] when sampled from general distributions supported on a set [u[subscript min],ru[subscript min]]. We also provide an additive PTAS for all bounded distributions. Our algorithms are based on novel extreme value theorems for MHR and regular distributions, and apply probabilistic techniques to understand the statistical properties of revenue distributions, as well as to reduce the size of the search space of the algorithm. As a byproduct of our techniques, we establish structural properties of optimal solutions. We show that, for all ϵ >; 0, g(1/ϵ) distinct prices suffice to obtain a (1 + ϵ)-factor approximation to the optimal revenue for MHR distributions, where g(1/ϵ) is a quasi-linear function of 1/ϵ that does not depend on the number of items. Similarly, for all ϵ >; 0 and n >; 0, g(1/ϵ · log n) distinct prices suffice for regular distributions, where n is the number of items and g(·) is a polynomial function. Finally, in the i.i.d. MHR case, we show that, as long as the number of items is a sufficiently large function of 1/ϵ, a single price suffices to achieve a (1 + ϵ)-factor approximation. Our results represent significant progress to the single-bidder case of the multidimensional optimal mechanism design problem, following Myerson's celebrated work on optimal mechanism design [Myerson 1981].National Science Foundation (U.S.) (Award CCF-0953960)National Science Foundation (U.S.) (Award CCF-1101491)Alfred P. Sloan Foundation (Fellowship

    A Size-Free CLT for Poisson Multinomials and its Applications

    Full text link
    An (n,k)(n,k)-Poisson Multinomial Distribution (PMD) is the distribution of the sum of nn independent random vectors supported on the set Bk={e1,,ek}{\cal B}_k=\{e_1,\ldots,e_k\} of standard basis vectors in Rk\mathbb{R}^k. We show that any (n,k)(n,k)-PMD is poly(kσ){\rm poly}\left({k\over \sigma}\right)-close in total variation distance to the (appropriately discretized) multi-dimensional Gaussian with the same first two moments, removing the dependence on nn from the Central Limit Theorem of Valiant and Valiant. Interestingly, our CLT is obtained by bootstrapping the Valiant-Valiant CLT itself through the structural characterization of PMDs shown in recent work by Daskalakis, Kamath, and Tzamos. In turn, our stronger CLT can be leveraged to obtain an efficient PTAS for approximate Nash equilibria in anonymous games, significantly improving the state of the art, and matching qualitatively the running time dependence on nn and 1/ε1/\varepsilon of the best known algorithm for two-strategy anonymous games. Our new CLT also enables the construction of covers for the set of (n,k)(n,k)-PMDs, which are proper and whose size is shown to be essentially optimal. Our cover construction combines our CLT with the Shapley-Folkman theorem and recent sparsification results for Laplacian matrices by Batson, Spielman, and Srivastava. Our cover size lower bound is based on an algebraic geometric construction. Finally, leveraging the structural properties of the Fourier spectrum of PMDs we show that these distributions can be learned from Ok(1/ε2)O_k(1/\varepsilon^2) samples in polyk(1/ε){\rm poly}_k(1/\varepsilon)-time, removing the quasi-polynomial dependence of the running time on 1/ε1/\varepsilon from the algorithm of Daskalakis, Kamath, and Tzamos.Comment: To appear in STOC 201

    Mechanism Design via Optimal Transport

    Get PDF
    Optimal mechanisms have been provided in quite general multi-item settings [Cai et al. 2012b, as long as each bidder's type distribution is given explicitly by listing every type in the support along with its associated probability. In the implicit setting, e.g. when the bidders have additive valuations with independent and/or continuous values for the items, these results do not apply, and it was recently shown that exact revenue optimization is intractable, even when there is only one bidder [Daskalakis et al. 2013]. Even for item distributions with special structure, optimal mechanisms have been surprisingly rare [Manelli and Vincent 2006] and the problem is challenging even in the two-item case [Hart and Nisan 2012]. In this paper, we provide a framework for designing optimal mechanisms using optimal transport theory and duality theory. We instantiate our framework to obtain conditions under which only pricing the grand bundle is optimal in multi-item settings (complementing the work of [Manelli and Vincent 2006]), as well as to characterize optimal two-item mechanisms. We use our results to derive closed-form descriptions of the optimal mechanism in several two-item settings, exhibiting also a setting where a continuum of lotteries is necessary for revenue optimization but a closed-form representation of the mechanism can still be found efficiently using our framework.Alfred P. Sloan Foundation (Fellowship)Microsoft Research (Faculty Fellowship)National Science Foundation (U.S.) (CAREER Award CCF-0953960)National Science Foundation (U.S.) (Award CCF-1101491)Hertz Foundation (Daniel Stroock Fellowship

    The Complexity of Optimal Mechanism Design

    Get PDF
    Myerson's seminal work provides a computationally efficient revenue-optimal auction for selling one item to multiple bidders [18]. Generalizing this work to selling multiple items at once has been a central question in economics and algorithmic game theory, but its complexity has remained poorly understood. We answer this question by showing that a revenue-optimal auction in multi-item settings cannot be found and implemented computationally efficiently, unless zpp ⊇ P[superscript #P]. This is true even for a single additive bidder whose values for the items are independently distributed on two rational numbers with rational probabilities. Our result is very general: we show that it is hard to compute any encoding of an optimal auction of any format (direct or indirect, truthful or non-truthful) that can be implemented in expected polynomial time. In particular, under well-believed complexity-theoretic assumptions, revenue-optimization in very simple multi-item settings can only be tractably approximated. We note that our hardness result applies to randomized mechanisms in a very simple setting, and is not an artifact of introducing combinatorial structure to the problem by allowing correlation among item values, introducing combinatorial valuations, or requiring the mechanism to be deterministic (whose structure is readily combinatorial). Our proof is enabled by a flow-interpretation of the solutions of an exponential-size linear program for revenue maximization with an additional supermodularity constraint.Alfred P. Sloan Foundation (Fellowship)Microsoft Research (Faculty Fellowship)National Science Foundation (U.S.) (CAREER Award CCF-0953960)National Science Foundation (U.S.) (Award CCF-1101491)Hertz Foundation (Daniel Stroock Fellowship

    Room-temperature polariton condensates in all-dielectric microcavities.

    No full text
    Cavity polaritons are quasiparticles formed when a photon con ned within a cavity interacts with an elementary excitation in a semiconductor that is called exciton. Under the right conditions, cavity polaritons form a macroscopic condensate in the ground state. This condensate decays through the cavity mirrors, thus providing coherent light-emission: a phenomenon termed polariton lasing. The threshold for polariton lasing can be signi cantly lower than that required for conventional lasing. Large exciton binding energies are an essential requirement to obtain polariton lasing at room temperature. Group III nitrides and ZnO are the only inorganic semiconductors possessing Wannier-Mott exciton binding energies above 25 meV, the room-temperature thermal energy. In contrast, Frenkel excitons in organic semiconductors possess binding energies of 1 eV and are thus highly stable at room temperature. This thesis consists of two parts. The first part concerns the fabrication and optical characterisation of samples consisting of an ultra-smooth GaN membrane encapsulated in an all-dielectric (SiO2/Ta2O5) distributed Bragg reflector (DBR) microcavity. By utilising the selective photo-electro-chemical (PEC) etching of an InGaN sacri cial layer, GaN membranes 200 nm thick are produced and introduced between DBRs. The second part is devoted to the demonstration of a room-temperature organic polariton condensate. The studied samples consist of a thermally evaporated 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl) fluorene (TDAF) thin film enclosed within an all-dielectric microcavity, consisting of SiO2 and Ta2O5 pairs. In both GaN and organic systems, the strong coupling for various detunings is demonstrated by performing angle-resolved reflectivity and photoluminescence (PL) measurements. On reaching threshold, the nonlinear increase in the PL is blueshifted with respect to low power emission, and is accompanied by a simultaneous reduction in the linewidth, marking the onset of polariton lasing at room-temperature. In the organic microcavities particularly, the condensate formed above threshold is linearly polarised and exhibits o -diagonal long-range order with a spatial coherence that is dependent on the pump shape. Moreover, the ambipolar electrical characteristics of this organic semiconductor and the high electron mobility of GaN suggest both materials as promising candidates for direct electrical injection.Open Acces

    Optimal testing for properties of distributions

    Get PDF
    Given samples from an unknown discrete distribution p, is it possible to distinguish whether p belongs to some class of distributions C versus p being far from every distribution in C? This fundamental question has received tremendous attention in statistics, focusing primarily on asymptotic analysis, as well as in information theory and theoretical computer science, where the emphasis has been on small sample size and computational complexity. Nevertheless, even for basic properties of discrete distributions such as monotonicity, independence, logconcavity, unimodality, and monotone-hazard rate, the optimal sample complexity is unknown. We provide a general approach via which we obtain sample-optimal and computationally efficient testers for all these distribution families. At the core of our approach is an algorithm which solves the following problem: Given samples from an unknown distribution p, and a known distribution q, are p and q close in x[superscript 2]-distance, or far in total variation distance? The optimality of our testers is established by providing matching lower bounds, up to constant factors. Finally, a necessary building block for our testers and an important byproduct of our work are the first known computationally efficient proper learners for discrete log-concave, monotone hazard rate distributions

    Zero-Sum Polymatrix Games: A Generalization of Minmax

    Get PDF
    We show that in zero-sum polymatrix games, a multiplayer generalization of two-person zero-sum games, Nash equilibria can be found efficiently with linear programming. We also show that the set of coarse correlated equilibria collapses to the set of Nash equilibria. In contrast, other important properties of two-person zero-sum games are not preserved: Nash equilibrium payoffs need not be unique, and Nash equilibrium strategies need not be exchangeable or max-min.National Science Foundation (U.S.) (CCF-0953960)National Science Foundation (U.S.) (CCF-1101491

    Game Theory based Peer Grading Mechanisms for MOOCs

    Get PDF
    An efficient peer grading mechanism is proposed for grading the multitude of assignments in online courses. This novel approach is based on game theory and mechanism design. A set of assumptions and a mathematical model is ratified to simulate the dominant strategy behavior of students in a given mechanism. A benchmark function accounting for grade accuracy and workload is established to quantitatively compare effectiveness and scalability of various mechanisms. After multiple iterations of mechanisms under increasingly realistic assumptions, three are proposed: Calibration, Improved Calibration, and Deduction. The Calibration mechanism performs as predicted by game theory when tested in an online crowd-sourced experiment, but fails when students are assumed to communicate. The Improved Calibration mechanism addresses this assumption, but at the cost of more effort spent grading. The Deduction mechanism performs relatively well in the benchmark, outperforming the Calibration, Improved Calibration, traditional automated, and traditional peer grading systems. The mathematical model and benchmark opens the way for future derivative works to be performed and compared
    corecore